
IEEE TRANSACTIONS ON RADAR SYSTEMS, VOL. 3, 2025 1269

Ternary Frequency-Coded CW Radar Waveform Achieving
Almost Perfect Periodic Autocorrelation

Nadav Levanon

Abstract—To broaden the set of available periodic continuous wave
(CW) waveforms, a new candidate employing ternary symmetric fre-
quency coding with values (−1, 0, +1) is proposed. Its periodic
autocorrelation function (PACF) closely resembles that of the well-known
almost perfect sequence (APS), a binary phase-coded waveform with
values (−1, +1). Both waveform families exhibit real-valued PACFs with
zero sidelobes (SLs), except for a single, negative SL at the midpoint
of the period. The binary phase-coded APS family is well-established,
with sequence lengths N generally being multiples of 4. A particularly
convenient subfamily, defined by N = 2(p+1), where p is any odd prime
power, can be readily constructed. A transformation method is presented
for converting a given APS phase-coded sequence into its frequency-
coded counterpart. While a key limitation of frequency coding is that
the symmetric spacing of frequency components around 0 is rigidly tied
to the code element duration, a significant advantage is that both the
transmitted and reference waveforms are unimodular.

Index Terms—Almost perfect sequences (APSs), continuous
wave (CW) waveforms, frequency coding, periodic autocorrela-
tion, phase coding.

I. INTRODUCTION

A well-known and significant binary phase-coded continuous wave
(CW) radar waveform is the almost perfect sequence (APS) waveform
[1], [2], [3], [4]. The importance of APS stems from several key
properties.

1) It offers greater diversity than conventional linear frequency
modulation (CW-LFM).

2) It employs only two antipodal phase values (0◦ and 180◦),
making it relatively simple to implement.

3) Its periodic autocorrelation function (PACF) exhibits zero
sidelobes (SLs) throughout the period, except for a single SL located
at the midpoint.

In contrast, other two-valued phase sequences commonly used
for CW radar applications—such as Legendre sequences or
m-sequences—require nonantipodal phase values (00, β , 1800) to
achieve perfect PACF, where all SLs are 0 [5]. A recent paper [6],
on experimental bistatic CW radar, reported no apparent difficulty
in using two nonantipodal phase values. Nevertheless, to avoid the
drawbacks associated with nonantipodal phase values, Levanon and
Cohen [7] proposed converting a binary phase-coded sequence into a
frequency-coded one, resulting in a unimodular CW binary frequency
shift keying (BFSK-CW) transmitted waveform.

A limitation of the approach in [7] is that achieving zero delay SLs
requires the receiver to employ a mismatched filter that incorporates
amplitude keying, thereby introducing a 3-dB mismatch loss.

All phase or frequency-coded CW sequences suffer a major
drawback compared with CW-LFM. Processing coded sequences
requires capturing the full bandwidth of the complex envelope. In
contrast, CW-LFM processing relies only on the much narrower,
delay-dependent beat frequency generated between the transmitted
signal and the target reflection.
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Fig. 1. Periodic autocorrelation of a binary phase-coded APS sequence of
length N = 56, whose hexadecimal representation is 54E793FAB1A6C0.

This correspondence introduces one more periodic CW waveform.
The proposed waveform modifies the APS concept by replacing
its binary phase-coded modulation with ternary frequency-coded
modulation. That addition increases the diversity of frequency-coded
CW waveforms, Ashe et al. [8] proposed a phase-to-frequency coding
transformation, known as derivative phase (DP), which altered the
aperiodic autocorrelation of the compressed pulse. In contrast, our
transformation preserves the APS periodic autocorrelation, maintain-
ing a zero imaginary component in the PACF, despite the inherently
complex nature of frequency-coded waveforms.

The following section reviews the phase-coded APS waveform,
its properties, and known generation methods. Section III introduces
the transformation to frequency-coded APS, detailing their properties
and comparing both waveform types.

II. PHASE-CODED APS
Constructing phase-coded APS sequences requires a background

in number theory. An early finding established that the number
of sequence elements, N, must be a multiple of 4. An important
subgroup of APS requires also that

N = 2 (p + 1) , p = odd prime power. (1)

Recently, constructing an APS belonging to this prime-dependent
subgroup has become easier with the introduction of the MAT-
LAB function apaseq, available from version 2024a. Currently,
apaseq generates a single sequence for a given length N. However,
with minor modifications, it can be extended to produce multiple
sequences—matching the number of primitive polynomials available
for that length.

In an example of APS phase-coded sequence, found in [3],
the hexadecimal representation of the N = 56 binary elements is
54E793FAB1A6C0. Its periodic autocorrelation is given in Fig. 1.
Because the signal takes real values (−1, +1), its autocorrelation
is also real. The plot shows a main periodic peak of ampli-
tude N, followed by zero SLs, except for one, a mid-peak with
amplitude = −N + 4.

For a given length N, where multiple APS sequences are available,
the differences between them are fundamental—extending beyond
cyclic shift, horizontal flips or negations. A fundamental difference

2832-7357 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and
similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on September 20,2025 at 03:45:55 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-3717-2474


1270 IEEE TRANSACTIONS ON RADAR SYSTEMS, VOL. 3, 2025

Algorithm 1 Two Long Frequency-Coded Sequences
Table 1. Two halves of the hexadecimal sequence represent-
ing the odd frequencies. N = 1000

EE05D1E0A4AFB2C29021A4C7E808635AE0537754CF

505AC705DA2E24C019845A97799FF36E2E917C7297

D4335444D7E294E7BFA07369EFDAF2C82B6BE1D17

E205D1E0A4AFB2C29021A4C7E808635AE0537754CF

505AC705DA2E24C019845A97799FF36E2E917C7297

D4335444D7E294E7BFA07369EFDAF2C82B6BE1D17

Table 2. Two halves of the hexadecimal sequence represent-
ing the odd frequencies. N = 1200

2ECEB4684C6C96C3C1FE93F3F9D03B6FAFE98DCA50

3447EF7A0D14EEB4C5955457F71CFBAEC557228831

C40575559734A235D3E8420774FD6B139A028248FD

180C0DA01F0F25B2737A74A3

22CEB4684C6C96C3C1FE93F3F9D03B6FAFE98DCA50

3447EF7A0D14EEB4C5955457F71CFBAEC557228831

C40575559734A235D3E8420774FD6B139A028248FD

180C0DA01F0F25B2737A74A3

is recognized when the periodic cross correlation (PCC) between two
sequences of the same length resembles PCC between two random
sequences.

III. TRANSFORMATION TO FREQUENCY-CODED APS
The suggested transformation converts a binary phase-coded APS

sequence of length N into a symmetrical ternary frequency-coded
sequence of length M = 2N. The resulting sequence preserves the
almost perfect periodic autocorrelation property, with a main peak
of height M. The three possible values of the normalized frequency
4 f tb, assigned to the M elements, are {−1, 0, +1}, where tb denotes
the duration of each frequency element.

An additional key property of the normalized frequency-coded
sequence is that all even-indexed elements are 0. As a result, all ele-
ments at odd-indices m = 1, 3, 5, . . . ., M−3, M−1 in the normalized
frequency sequence 4 fm tb take on binary values {−1, +1}.

Since the amplitude is not modulated, the complex envelope over
one period is given by

u (n) = exp

 
j
π

2

nX
k=1

4 fk tb

!
, 1 ≤ n ≤ M. (2)

It is important to note that the receiver is matched, meaning that the
reference waveform used in the receiver is identical to the transmitted
waveform.

The binary nature of the odd-indexed frequency elements allows
the frequency-coded sequence to be compactly represented as a
hexadecimal sequence of N/4 elements. For example, the 56-element
phase-coded sequence represented by the 14-element hexadecimal
sequence 54E793FAB1A6C0 is transformed into a ternary frequency-
coded sequence, where all even elements are 0 and the odd elements
are binary {−1, +1}, described by the 14-element hexadecimal
sequence 7E945A07E975A0.

Algorithm 2 presents a MATLAB script that implements an
algorithm for transforming the phase-coded sequence into its
frequency-coded equivalent, using the hexadecimal sequence ref-
erenced above as an example. It also generates a plot of
the three components of the PACF of the frequency-coded
sequence.

The script requires a cyclic shift value (cs), which is applied to
the binary vector x. A suitable cyclic shift is essential to ensure
smooth phase transition between consecutive periods. In the given

Fig. 2. Periodic autocorrelation of a ternary frequency-coded APS sequence
of length M = 2 N = 112, whose hexadecimal odd frequencies representation
is 7E945A07E975A0 and CS = 0.

Fig. 3. Frequency coding of a ternary frequency-coded APS sequence whose
hexadecimal odd frequencies representation is 7E945A07E975A0 (bottom).
Associated phase evolution (top).

example, valid cs values range from 0 to 5. In contrast, values like
6, 7, 9, 10, or 13 disrupt phase continuity, causing imperfect periodic
autocorrelation.

The MATLAB script can be downloaded by copying the URL
provided in [9] into your browser’s address bar and pressing Enter.
Alternatively, to extract the script from a PDF edition of this article,
use Adobe’s conversion tool to convert Algorithm 2 to PowerPoint,
then copy the text from the resulting PPTX file and paste it into
MATLAB’s editor.

Fig. 2 displays the three components—real, imaginary, and
absolute—of the periodic autocorrelation of the frequency-coded
sequence. All three are necessary because, unlike binary phase
coding, frequency coding yields a complex signal envelope, with
an autocorrelation function that is typically complex and not
restricted to real values. Fig. 3 shows the actual frequency-
coded sequence along with the corresponding phase evolution.
In the top subplot of Fig. 3 note that one period (112 ele-
ments) of the phase evolution starts and ends at the same phase
value. The circular shift (cs) is applied specifically to ensure this
property.

The hexadecimal representation of the odd-indexed frequencies
has a length of N/4. A noteworthy property, often but not always
observed, is that the two halves of this sequence differ by only one
hexadecimal element. For example, in our 56-element case the two
halves are: 7E945A0 and 7E975A0. The same property is observed
for frequency-coded sequences of length N = 1000 and N = 1200,
as illustrated in Tables 1 and 2 in Algorithm 1.

The bottom subplot of Fig. 3 highlights the required relationship
between the three frequencies of the frequency-coded APS complex
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Algorithm 2 MATLAB Script Converting Phase-Coded APS Into a Frequency-Coded Version
clear; nn=56; n samples=2; nns=nn*n samples;

hexStr=’54E793FAB1A6C0’;

binaryVec=hexToBinaryVector(hexStr,nn); x=2*binaryVec- 1; cs=1;

x=circshift(x,cs); dd=0.5; ns=1:n samples; d phase=dd/(n samples-1);

if x(1)>0
u phase q(1,:)=(ns-1)*d phase;

else

u phase q(1,:)=-(ns-1)*d phase;

end

for q=2:nn

if x(q)==x(q-1)

u phase q(q,:)=u phase q(q-1,end)-(ns-1)*d phase;

else

u phase q(q,:)=u phase q(q-1,end)+(ns-1)*d phase;

end

end

u phase f=reshape(u phase q’,1,nn*n samples);

uu=exp(1i*u phase f*pi);

f basic dp 1=diff(u phase f);f basic dp=0.5*[f basic dp 1 0]; f basic list=f basic dp;

f basic array= (reshape(f basic list/0.25, [2,nn]))’; f basic line=f basic array(:,1)’;

binary f=0.5*(f basic line+1); binaryString = num2str(binary f, ’%d’); numBits = 4;

paddedBinaryString=pad(binaryString,ceil(length(binaryString)/numBits)*numBits,’left’,’0’);

groupedBinaryString = reshape(paddedBinaryString, numBits, []).’;

hexSequence = cellstr(dec2hex(bin2dec(groupedBinaryString)));

hexResult = strjoin(hexSequence, ’’);

disp([’Hex of the odd (non-zero) frequencies: ’, hexResult]);

out1=real(ifft(fft(uu). *conj(fft(uu)))); out2=abs(ifft(fft(uu). *conj(fft(uu))));

out3=imag(ifft(fft(uu). *conj(fft(uu))));

figure(1), clf, hold off;

p1=plot(out1, ‘k’,’linewidth’,2); hold on;

p2=plot(out2,’r:’,’linewidth’,2.5); p3=plot(out3,’b--’,’linewidth’,2);

legend([p1 p2 p3], ‘real’, ‘absolute’,’imaginary’, ‘location’, ‘southeast’); grid on;

set(gca,’FontSize’,13,’FontWeight’,’bold’, ‘GridAlpha’,1);

xlim([0, nns]); lim=nns*1.2; lim2=nns; ylim([−lim lim]);

set(gca, ‘ytick’,[−lim2+8 0 lim2]);

xlabel(‘Delay elements’); ylabel(‘Periodic autocorrelation’);

envelope and the frequency bit duration tb f . Note that to ensure equal
overall period duration for a corresponding pair of phase-coded and
frequency-coded sequences, the duration of each phase element, tbp,
should be twice that of each frequency element, tb f . In both phase-
coded and frequency-coded APS versions, the relevant bit duration
influences the delay resolution. However, in frequency-coding tb f also
influences the waveform’s frequency design. If the three frequency
values (1/4 tb f ){−1, 0, +1} are not strictly satisfied, the almost perfect
autocorrelation property is compromised.

If the delay resolution ∆t is defined as the delay between the
autocorrelation peak and its first null, then for the frequency-coded
signal ∆t = 2 tb f , while for the phase-coded signal ∆t = tbp.
This difference should be considered when comparing spectra in
Figs. 4 and 5. Specifically, the horizontal axis label in Fig. 4 could be
replaced with f ∆t/2, while in Fig. 5 it could be replaced with f ∆t.

In other words, if the horizontal axis label in Fig. 4 were changed
to f ∆t, the x-ticks values would double, resulting in identical axis
labels and tick values in both figures. With this background, we can
conclude that the main spectral lobe of the frequency-coded APS
is slightly narrower than that of the phase-coded APS, while the
spectral SLs are significantly lower in Fig. 4. A similar observation
was reported in [7].

IV. DOPPLER RESILIENCE

Doppler resilience of our frequency-coded waveform depends
strongly on the period duration and on the number P of periods
coherently integrated. In the presence of target-induced Doppler
shift, all three frequency levels are shifted almost equally up or
down in frequency. When Doppler is the sole source of disturbance,
the periodic ambiguity function (see Fig. 6) illustrates the resulted
degradation—primarily observed as increased SL levels with rising
Doppler. Fig. 6 corresponds to a TFSK waveform with 176 elements
per period and P = 8 coherently processed periods. The delay axis
spans up to ±80 elements and the normalized Doppler axis extends
to ν tb = ±1/14080.

Fig. 6 shows that the delay SLs, ideally zero at no-Doppler, rise
above −60 dB when |ν M tb| > 0.03, M = 1408.

To match a specific Doppler shifted reflection of the signal, the
reference sequence in the receiver should incorporate a linear phase-
ramp corresponding to the desired Doppler shift. This adjustment
shifts the zero delay-SLs region to center around the selected Doppler
frequency.

Fig. 7 was introduced to enable comparison with the
delay–Doppler response of the corresponding 88-element binary
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Fig. 4. Spectrum of ternary frequency-coded APS sequence of length M =
2N = 2000.

Fig. 5. Spectrum of binary phase-coded APS sequence of length N = 1000.

Fig. 6. Delay–Doppler response of P = 8 periods of a 176-element ternary
frequency-coded sequence.

phase-coded sequence. The main adverse effect in Fig. 7 is the
widening of the main lobe as the magnitude of the Doppler shift
increases. The data tip in Fig. 7 highlights the contour line below
which this widening becomes evident.

Another valuable comparison between phase-coded and frequency-
coded APS waveforms would concern detection performances.
However, such a comparison is not practical at this stage, as it
depends on numerous parameters related to the waveform, receiver
design, target characteristics, and environmental conditions.

Fig. 7. Delay-Doppler response of P = 8 periods of an 88-element binary
phase-coded sequence.

V. CONCLUSION

A periodic CW unimodular waveform was introduced that utilizes
ternary, symmetrical frequency coding. The PACF of the proposed
waveform resembles that of the APS, which is a binary (1, +1) phase-
coded waveform. Both their PACFs are real and exhibit zero SLs
except for one large negative SL, at the period’s midpoint.

A transformation is presented in the form of a MATLAB script
that converts APS phase-coded sequences into their frequency-coded
counterpart. APS sequences are well known and several families can
be generated with relative ease.

Numerical comparisons are provided to illustrate the spectral
characteristics of both waveform types. The Doppler tolerance of a
ternary frequency-coded sequence is also demonstrated. The ability
to construct long frequency-coded sequences makes low-power, peri-
odically coded CW waveforms a promising candidate for long-range
radar applications.
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